Universidade de Berkeley cria laser de 1 quadrilhão de watts
27 jul2012 - 16h10
Compartilhar
O Acelerador de Laser do Laboratório Berkeley (Bella, na sigla em inglês) anunciou ter criado um pulso de laser com duração de apenas 1 quadrilionésimo de segundo, mas com energia de 1 petawatt (1 quadrilhão de watts) e uma frequência de 1 hertz - ou seja, um pulso disparado a cada segundo. Segundo a Universidade de Berkeley (EUA), é um recorde de energia para pulsos com frequência tão rápida.
Segundo os cientistas, o equipamento consome pouca energia, já que os pulsos são muito curtos
Foto: Lawrence Berkeley National Laboratory / Divulgação
"Isso representa um novo recorde mundial", diz Wim Leemans, pesquisador da Divisão de Pesquisa em Fusão e Aceleração do laboratório, que fez o anúncio nesta sexta-feira. "Esta vai ser uma ferramenta excepcional para o avanço da física de laser e de interações com a matéria. O pico de poder do laser vai nos dar acesso a novos regimes, como o desenvolvimento de aceleradores de partículas compactos para a física de alta energia".
Ao contrário dos aceleradores tradicionais, que usam campos de energia elétrica para aumentar a velocidade de partículas como prótons e elétrons, os aceleradores laser-plasma usam raios para capturar elétrons livres no plasma e acelerá-los a altas energias.
Os pesquisadores esperam que o Bella seja o primeiro acelerador laser-plasma a chegar a uma energia de 10 bilhões de elétron-volts (10 GeV) e isso com apenas 1 m de comprimento (além do sistema de laser), enquanto os aceleradores tradicionais precisam de túneis quilométricos.
O Grande Colisor de Hádrons (LHC, na sigla em inglês) é o maior acelerador de partículas do planeta e teve custo avaliado em cerca de US$ 10 bilhões
Foto: Cern / Divulgação
O acelerador tenta reproduzir as condições do universo logo após o Big Bang
Foto: Cern / Divulgação
Um dos objetivos dos cientistas no LHC é tentar descobrir o bóson de Higgs, a única partícula do modelo padrão da física de partículas que ainda não foi confirmada
Foto: Cern / Divulgação
O modelo explica o comportamento e as interações das partículas fundamentais que constituem a matéria ordinária, da qual somos feitos
Foto: Cern / Divulgação
O LHC faz as partículas darem voltas em um túnel de 27 km na fronteira entre Suíça e França
Foto: Cern / Divulgação
Viajando a 99,9% da velocidade da luz, as partículas colidem com outras na direção oposta e os cientistas observam os resultados
Foto: Cern / Divulgação
Existem quatro locais onde ocorrem as colisões ao longo do túnel, cada um com um enorme detector
Foto: Cern / Divulgação
Somente o CMS (sigla em inglês para solenoide compacto de múons) pesa 12,5 mil toneladas
Foto: Cern / Divulgação
O CMS e o Atlas são os dois detectores que buscam o bóson de Higgs. Segundo a agência BBC, o CMS custou US$ 458 milhões
Foto: Cern / Divulgação
O Atlas tem 45 m de comprimento, 25 m de altura e 7 toneladas
Foto: Cern / Divulgação
Além do bóson de Higgs, o Atlas busca dados sobre outras dimensões de espaço - além das três que estamos acostumados -, matéria escura e outros
Foto: Cern / Divulgação
Foi no Alice que os cientistas registraram colisões de átomos de chumbo, em sua busca pelas condições iniciais do universo
Foto: Cern / Divulgação
Essas colisões chegaram a temperaturas inéditas em experimentos realizados pelo homem: 10 trilhões de °C
Foto: Cern / Divulgação
A estrutura cilíndrica do Super-Kamiokande é formada por 50 mil t de água pura rodeada por mais de 13 mil tubos fotomultiplicadores
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
O Super-Kamiokande é observatório de neutrinos localizado a 1 km debaixo da terra, em uma mina na cidade de Hida, no Japão
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
A estrutura cilíndrica tem 42 m de altura e 39,3 m de largura
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
O Super-K, como também é chamado, para procurar por decaimento de próton, detectar neutrinos de qualquer supernova que possa existir em nossa galáxia e estudar neutrinos solares e neutrinos atmosféricos
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
O Super-Kamiokande é o maior detector de radiação Cherencov aquático do mundo
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
Radiação Cherencov é uma radiação eletromagnética que pode ser visível
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
Essa radiação provém da interação de um neutrino com os núcleos dos átomos das moléculas de água
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
A construção do Super-K começou em 1991 e a primeira observação foi feita em 1996
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
A operação do Super-Kamiokande é feita com a colaboração de 110 pessoas e 30 institutos do Japão, Estados Unidos, Coreia, China, Polônia e Espanha
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
Um dos propósitos do experimento é revelar as propriedades do neutrino
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
Em 1998, os cientistas descobriram mudanças nos tipos de oscilações de neutrinos no voo na observação de neutrinos atmosféricos
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
A observação das propriedades do neutrino pode ajudar o entendimento de como a matéria foi criada no começo do Universo
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
O Supercondutor Supercolisor (SSC, na sigla em inglês) seria o maior acelerador de partículas já criado pelo homem
Foto: Fermilab / Divulgação
Ele começou a ser construído perto de Waxahachie, no Estado americano do Texas
Foto: Fermilab / Divulgação
O projeto, que começou a ser construído em 1991, custaria US$ 12 bilhões. A ideia é que ele fosse capaz de recriar as condições do Big Bang
Foto: Fermilab / Divulgação
O SSC aceleraria prótons através de um tubo de 87 km a uma velocidade aproximada à da luz
Foto: Fermilab / Divulgação
Em 1993, o Congresso americano cancelou a construção - que já havia gastado US$ 2 bilhões e criado 12 km de túneis -, por achar o SSC caro demais, e decidiu priorizar outro projeto: o da Estação Espacial Internacional
Foto: Fermilab / Divulgação
Em 31 de outubro de 2000, um foguete partia do cosmódromo Baikonur, no Cazaquistão - com três tripulantes a bordo. Eram os primeiros ocupantes a viver na Estação Espacial Internacional (ISS, na sigla em inglês)
Foto: AFP
A ISS foi construída com os esforços das agências espaciais japonesa (Jaxa), canadense (CSA), americana (Nasa), russa (Roscosmos) e 11 membros da Agência Espacial Europeia (ESA, na sigla em inglês): Bélgica, Dinamarca, França, Alemanha, Itália, Holanda, Noruega, Espanha, Suécia, Suíça e Reino Unido
Foto: AFP
A ISS tem 419.857 kg, o equivalente a 320 carros. O espaço interno é de 900 m³, o equivalente ao de um Boeing 747
Foto: AFP
Em 10 anos de ocupação ininterrupta, foram mais de 600 experimentos realizados na estação
Foto: AFP
Segundo a agência EFE, estima-se que o custo total da ISS tenha chegado a US$ 100 bilhões
Foto: Getty Images
O próximo projeto megalômano? Um dos candidatos é uma viagem a Marte. O presidente americano, Barack Obama, já afirmou que espera que a viagem seja feita em 2035
Foto: Nasa / Divulgação
Na Rússia, a agência espacial do país (Roscosmos) e a europeia (ESA) já realizam uma simulação de um possível voo ao planeta vermelho, com décadas de antecedência
Foto: ESA / Divulgação
Astronautas passam pelas mesmas condições que teriam em uma nave espacial - com exceção da falta de gravidade
Foto: ESA / Divulgação
Simulação tem direito a "descida" em Marte
Foto: ESA / Divulgação
Astronautas passam por exames - conduzidos por outros astronautas, já que ninguém pode entrar nas instalações durante os 520 dias do experimento.