Estudo indica que nêutrons viajam entre universos paralelos
19 jun2012 - 15h08
Compartilhar
Um estranho fenômeno da física pode ser explicado por nêutrons que vão e voltam entre nosso universo e outro paralelo. Experimentos em temperatura extremamente baixa feitos por Anatoly Serebrov no instituto francês Laue-Langevin revelaram que nêutrons desapareciam por curtos períodos. Agora, uma teoria tenta explicar o fenômeno.
Somente o CMS (sigla em inglês para solenoide compacto de múons) pesa 12,5 mil toneladas
Os físicos teóricos Zurab Berezhiani e Fabrizio Nesti, na Universidade de l'Áquila (Itália) reanalisaram os dados experimentais. Eles mostram na publicação especializada European Physical Journal C que o desaparecimento parece depender da direção e da força do campo magnético aplicado.
Os pesquisadores criaram a hipótese de que os nêutrons oscilam entre os dois universos com seus "nêutrons espelho". Cada uma dessas partículas teria a capacidade de transitar da sua "irmã" e de volta.
E os físicos acreditam que outras partículas, como próton e elétron, também teriam suas irmãs espelho - mas apenas as neutras conseguiriam oscilar entre universos. Estas não seriam afetadas pelas forças forte e fraca do nosso universo (responsáveis pela união do átomo), mas teriam suas próprias relações de força forte e fraca.
A hipótese de viagem entre universos paralelos coincidiria com a relação entre o desaparecimento temporário e o campo magnético e também com o que já foi descoberto sobre o fenômeno. Os cientistas afirmam que essa oscilação, contudo, dura apenas alguns segundos.
A hipótese afirma ainda que a Terra é cercada por um campo magnético formado quando o planeta captura partículas espelho que flutuam pela galáxia como matéria escura. Ou seja, a hipótese ainda explicaria que a matéria escura seria resultado da oscilação das partículas espelho vindas de galáxia paralela à nossa.
Os pesquisadores afirmam que, caso seja sustentada por mais estudos, essa hipótese explicaria várias dúvidas da física, como a própria natureza da matéria escura. "Este resultado, se confirmado por futuros experimentos, terá as mais profundas consequências para a física de partículas, astrofísica e cosmologia", dizem os físicos no artigo.
Com informações do TG Daily.
O Grande Colisor de Hádrons (LHC, na sigla em inglês) é o maior acelerador de partículas do planeta e teve custo avaliado em cerca de US$ 10 bilhões
Foto: Cern / Divulgação
O acelerador tenta reproduzir as condições do universo logo após o Big Bang
Foto: Cern / Divulgação
Um dos objetivos dos cientistas no LHC é tentar descobrir o bóson de Higgs, a única partícula do modelo padrão da física de partículas que ainda não foi confirmada
Foto: Cern / Divulgação
O modelo explica o comportamento e as interações das partículas fundamentais que constituem a matéria ordinária, da qual somos feitos
Foto: Cern / Divulgação
O LHC faz as partículas darem voltas em um túnel de 27 km na fronteira entre Suíça e França
Foto: Cern / Divulgação
Viajando a 99,9% da velocidade da luz, as partículas colidem com outras na direção oposta e os cientistas observam os resultados
Foto: Cern / Divulgação
Existem quatro locais onde ocorrem as colisões ao longo do túnel, cada um com um enorme detector
Foto: Cern / Divulgação
Somente o CMS (sigla em inglês para solenoide compacto de múons) pesa 12,5 mil toneladas
Foto: Cern / Divulgação
O CMS e o Atlas são os dois detectores que buscam o bóson de Higgs. Segundo a agência BBC, o CMS custou US$ 458 milhões
Foto: Cern / Divulgação
O Atlas tem 45 m de comprimento, 25 m de altura e 7 toneladas
Foto: Cern / Divulgação
Além do bóson de Higgs, o Atlas busca dados sobre outras dimensões de espaço - além das três que estamos acostumados -, matéria escura e outros
Foto: Cern / Divulgação
Foi no Alice que os cientistas registraram colisões de átomos de chumbo, em sua busca pelas condições iniciais do universo
Foto: Cern / Divulgação
Essas colisões chegaram a temperaturas inéditas em experimentos realizados pelo homem: 10 trilhões de °C
Foto: Cern / Divulgação
A estrutura cilíndrica do Super-Kamiokande é formada por 50 mil t de água pura rodeada por mais de 13 mil tubos fotomultiplicadores
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
O Super-Kamiokande é observatório de neutrinos localizado a 1 km debaixo da terra, em uma mina na cidade de Hida, no Japão
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
A estrutura cilíndrica tem 42 m de altura e 39,3 m de largura
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
O Super-K, como também é chamado, para procurar por decaimento de próton, detectar neutrinos de qualquer supernova que possa existir em nossa galáxia e estudar neutrinos solares e neutrinos atmosféricos
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
O Super-Kamiokande é o maior detector de radiação Cherencov aquático do mundo
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
Radiação Cherencov é uma radiação eletromagnética que pode ser visível
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
Essa radiação provém da interação de um neutrino com os núcleos dos átomos das moléculas de água
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
A construção do Super-K começou em 1991 e a primeira observação foi feita em 1996
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
A operação do Super-Kamiokande é feita com a colaboração de 110 pessoas e 30 institutos do Japão, Estados Unidos, Coreia, China, Polônia e Espanha
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
Um dos propósitos do experimento é revelar as propriedades do neutrino
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
Em 1998, os cientistas descobriram mudanças nos tipos de oscilações de neutrinos no voo na observação de neutrinos atmosféricos
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
A observação das propriedades do neutrino pode ajudar o entendimento de como a matéria foi criada no começo do Universo
Foto: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo / Divulgação
O Supercondutor Supercolisor (SSC, na sigla em inglês) seria o maior acelerador de partículas já criado pelo homem
Foto: Fermilab / Divulgação
Ele começou a ser construído perto de Waxahachie, no Estado americano do Texas
Foto: Fermilab / Divulgação
O projeto, que começou a ser construído em 1991, custaria US$ 12 bilhões. A ideia é que ele fosse capaz de recriar as condições do Big Bang
Foto: Fermilab / Divulgação
O SSC aceleraria prótons através de um tubo de 87 km a uma velocidade aproximada à da luz
Foto: Fermilab / Divulgação
Em 1993, o Congresso americano cancelou a construção - que já havia gastado US$ 2 bilhões e criado 12 km de túneis -, por achar o SSC caro demais, e decidiu priorizar outro projeto: o da Estação Espacial Internacional
Foto: Fermilab / Divulgação
Em 31 de outubro de 2000, um foguete partia do cosmódromo Baikonur, no Cazaquistão - com três tripulantes a bordo. Eram os primeiros ocupantes a viver na Estação Espacial Internacional (ISS, na sigla em inglês)
Foto: AFP
A ISS foi construída com os esforços das agências espaciais japonesa (Jaxa), canadense (CSA), americana (Nasa), russa (Roscosmos) e 11 membros da Agência Espacial Europeia (ESA, na sigla em inglês): Bélgica, Dinamarca, França, Alemanha, Itália, Holanda, Noruega, Espanha, Suécia, Suíça e Reino Unido
Foto: AFP
A ISS tem 419.857 kg, o equivalente a 320 carros. O espaço interno é de 900 m³, o equivalente ao de um Boeing 747
Foto: AFP
Em 10 anos de ocupação ininterrupta, foram mais de 600 experimentos realizados na estação
Foto: AFP
Segundo a agência EFE, estima-se que o custo total da ISS tenha chegado a US$ 100 bilhões
Foto: Getty Images
O próximo projeto megalômano? Um dos candidatos é uma viagem a Marte. O presidente americano, Barack Obama, já afirmou que espera que a viagem seja feita em 2035
Foto: Nasa / Divulgação
Na Rússia, a agência espacial do país (Roscosmos) e a europeia (ESA) já realizam uma simulação de um possível voo ao planeta vermelho, com décadas de antecedência
Foto: ESA / Divulgação
Astronautas passam pelas mesmas condições que teriam em uma nave espacial - com exceção da falta de gravidade
Foto: ESA / Divulgação
Simulação tem direito a "descida" em Marte
Foto: ESA / Divulgação
Astronautas passam por exames - conduzidos por outros astronautas, já que ninguém pode entrar nas instalações durante os 520 dias do experimento.